Анализ временных рядов с периодическими колебаниями


Многие временные ряды имеют сезонные компоненты. Например, продажи игрушек имеют пики в ноябре, декабре и, возможно, летом, когда дети находятся на отдыхе. Эта периодичность имеет место каждый год. Однако относительный размер продаж может слегка изменяться из года в год. Таким образом, имеет смысл независимо экспоненциально сгладить сезонную компоненту с дополнительным параметром, обычно обозначаемым как  (дельта). Сезонные компоненты, по природе своей, могут быть аддитивными или мультипликативными. Например, в течение декабря продажи определенного вида игрушек увеличиваются на 1 миллион долларов каждый год. Для того чтобы учесть сезонное колебание, вы можете добавить в прогноз на каждый декабрь 1 миллион долларов (сверх соответствующего годового среднего). В этом случае сезонность - аддитивная. Альтернативно, пусть в декабре продажи увеличились на 40%, т.е. в 1.4 раза. Тогда, если общие продажи малы, то абсолютное (в долларах) увеличение продаж в декабре тоже относительно мало (процент роста константа). Если в целом продажи большие, то абсолютное (в долларах) увеличение продаж будет пропорционально больше. Снова, в этом случае продажи увеличатся в определенное число раз, и сезонность будет мультипликативной (в данном случае мультипликативная сезонная составляющая была бы равна 1.4). На графике различие между двумя видами сезонности состоит в том, что в аддитивной модели сезонные флуктуации не зависят от значений ряда, тогда как в мультипликативной модели величина сезонных флуктуаций зависит от значений временного ряда.

Предыдущие материалы: Следующие материалы: