Рекурсивные системы


Система рекурсивных уравнений – система, в которой зависимая переменная одного уравнения выступает в виде фактора x в другом уравнении, то есть система вида: Y1=a11x1 + a12x2 +…+ a1mxm +е1; Y2= b21y1 +a21x1 + a22x2 +…+ a2mxm +е2 ; Y3= b31y1 + b32y2+a31x1 + a32x2 +…+ a3mxm +е2 ; Yn= bn1y1 + bn2y2 +…+ bnn-1yn-1 + an1x1 + an2x2 +…+ anmxm +еn.

38.Системы одновременных уравнений одновременных уравнений, имея в виду, что здесь зависимая переменная одного уравнения может появляться одновременно в виде переменной (но уже в качестве независимой) в одном или нескольких других уравнениях. В таком случае теряет смысл традиционное различение зависимых и независимых переменных. Вместо этого устанавливается различие между двумя видами переменных.

Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица A в слагаемом Ay(t) приведенной выше системы уравнений).

Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия; это переменные с запаздыванием, т.е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные.

Экзогенными, напр., всегда оказываются показатели климатических условий, если они включаются в модель. В то же время многие экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.

Понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.

Предыдущие материалы: Следующие материалы: