Интерпретация моделей с распределенным лагом.


Рассмотрим модель с распределенным лагом в ее общем виде в предложении, что максимальная величина лага конечна: yt=a+b0*x1+b1*xt-1+…+bp*xt-p+ εt.

Эта модель говорит о том, что если  в некоторый момент времени t происходит изменение независимой переменной x1 то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.Коэффициент регрессии b0 (краткосрочный мультипликатор) при переменной xt характеризует среднее абсолютное изменение yt при изменении xt на 1ед. своего измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x. Еще две важные характеристики модели множественной регрессии: величина среднего лага и медианного лага. Средний лаг определяется по формуле средней арифметической взвешенной: l = Σj*βj и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании результата на изменение фактора, тогда как высокое его значение говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени. Медианный лаг – это величина лага, для которого Σβj≈0,5.

Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам: 1)текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом. Тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности факторов. 2) при большой величине лага снижается число наблюдений, по которому строится модель. И увеличивается число е факторных признаков. Это ведет к потере числа степеней свободы в модели. 3) в моделях с распределенным лагом часто возникает проблема автокорреляции остатков. Вышеуказанные обстоятельства приводят к значительной неопределенности относительно оценок параметров модели, снижению их точности и получению неэффективности оценок.

Предыдущие материалы: Следующие материалы: