Моделирование тенденций временного ряда.


(аналитическое выравнивание временного ряда)

Одним из наиболее распространенных способов моделирова­ния тенденции временного ряда является построение аналитиче­ской функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим вы­равниванием временного ряда.

Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные ви­ды функций. Для построения трендов чаще всего применяются следующие функции:

•         линейный тренд: Моделирование тенденций временного ряда. 

•         гипербола: Моделирование тенденций временного ряда.

•         экспоненциальный тренд: Моделирование тенденций временного ряда. 

•         тренд в форме степенной функции: Моделирование тенденций временного ряда.

•         парабола второго и более высоких порядков:Моделирование тенденций временного ряда. 

Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время t=1,2,..., n, а в качестве зависимой перемен- 1 ной — фактические уровни временного ряда Моделирование тенденций временного ряда..

Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэф­фициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни Моделирование тенденций временного ряда. и Моделирование тенденций временного ряда. тес­но коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, напри­мер, в форме экспоненты, то коэффициент автокорреляции пер­вого порядка по логарифмам уровней исходного ряда будет вы­ше, чем соответствующий коэффициент, рассчитанный по уров­ням ряда. Чем сильнее выражена нелинейная тенденция в изуча­емом временно м ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит не­линейную тенденцию, можно осуществить путем перебора ос­новных форм тренда, расчета по каждому уравнению скорректи­рованного коэффициента детерминации R2 и выбора уравнения тренда с максимальным значением скорректированного коэффи­циента детерминации.  Реализация этого метода относительно проста при компьютерной обработке данных.

Предыдущие материалы: Следующие материалы: