Специфика статистической оценки взаимосвязи двух временных рядов.


Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно-следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.

В общем случае каждый уровень временного ряда содержит 3 компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, т.к ее наличие приведет к завышению истинных показателей силы и связи изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности; либо к занижению этих показателей, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна.

Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей.

Если рассматриваемые временные ряды имеют тенденцию, линейный коэффициент корреляции по абсолютной величине будет высоким (положительным в случае совпадения и отрицательным в случае противоположной направленности тенденция рядов х и у). Однако из этого еще нельзя сделать вывод, что x причина y или наоборот. Высокий коэффициент корреляции в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью.  Например, коэффициент корреляции между численностью выпускников вузов и числом домов  отдыха в РФ в период с 1970 по 1990 г. составил 0,8. Это, естественно, не означает, что увеличение количества домов отдыха способствует росту числа выпускников вуза или увеличение числа последних стимулирует спрос на дома отдыха. 

Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде. Существуют различные методы исключения тенденции.

   Предположим, что по двум временным рядам Специфика статистической оценки взаимосвязи двух временных рядов. и Специфика статистической оценки взаимосвязи двух временных рядов. строится уравнение парной линейной регрессии вида Специфика статистической оценки взаимосвязи двух временных рядов.

Наличие тенденции в каждом из этих временных рядов означает, что на зависимую Специфика статистической оценки взаимосвязи двух временных рядов. и независимую Специфика статистической оценки взаимосвязи двух временных рядов. переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков Специфика статистической оценки взаимосвязи двух временных рядов. за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».

     Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных, помимо двух вышеназванных проблем, возникает также проблема мультиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.

Предыдущие материалы: Следующие материалы: