Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера.


Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью F-критерия Фишера:

Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера., где Dфакт - факторная сумма квадратов на одну степень свободы;

Dост - остаточная сумма квадратов на одну степень свободы;

R2 - коэффициент (индекс) множественной детерминации;

m – число параметров при переменных х

n – число наблюдений.

Частный F-критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. Предположим, что оцениваем значимость влияния х1 как дополнительно включенного в модель фактора. Используем следующую формулу:

Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера., где Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера. - коэффициент множественной детерминации для модели с полным набором факторов;

Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера. - тот же показатель, но без включения в модель фактора х1;

n – число наблюдений

m – число параметров в модели (без свободного члена).

Если оцениваем значимость влияния фактора хn после включения в модель факторов x1,x2, …,xn-1, то формула частного  F-критерия определится как

Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера.

В общем виде для фактора xi частный F-критерий Фишера определится как

Оценка значимости уравнения множественной регрессии в целом. Частные F-критерии Фишера.

Фактическое значение F-критерия Фишера сравнивается с табличным при 5%-ном или 1%-ном уровне значимости и числе степеней свободы: m и n-m-1. Если Fфакт>Fтабл(a,n,n-m-1), то дополнительное включение фактора xi в модель статистически оправданно и коэффициент чистой регрессии bi при факторе xi статистически значим. Если же Fфакт<Fтабл(a,n,n-m-1), то дополнительное включение фактора xi в модель существенно не увеличивает долю объясненной вариации признака y, следовательно, нецелесообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.

С помощью частного F-критерия Фишера можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор xi вводился в уравнение множественной регрессии последним. 

Если уравнение содержит больше двух факторов, то соответствующая программа ПК дает таблицу дисперсионного анализа, показывая значимость последовательного добавления к уравнению регрессии соответствующего фактора. Так, если рассматривается уравнение

y=a+b1x1+b2x2+ b3x3+ε,

то определяются последовательно F-критерий для уравнения с одним фактором х1, далее F-критерий для дополнительного включения в модель фактора х2, т.е. для перехода от однофакторного уравнения регрессии к двухфакторному, и, наконец, F-критерий для дополнительного включения в модель фактора х3 после включения в модель фактора х1 и х2. В этом случае F-критерий для дополнительного включения фактора х1 после х2 является последовательным в отличие от F-критерия для дополнительного включения в модель фактора х3, который является частным F-критерием, ибо оценивает значимость фактора в предположении, что он включен в модель последним.


Предыдущие материалы: Следующие материалы: